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Precession Equation of a Spinning Particle in Nonuniform Fields 
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The general equation governing the changes of orientation of a spinning particle is expressed in a compact 
tensorial form which represents an extension of the vector equation of Larmor precession. The time derivative 
of each component of a mean multipole moment of the particle is a linear combination of the multipole 
moments of all orders, subject to selection rules which express the interesting features of the motion. 

THE orientation of a spinning particle changes 
under the influence of the torques exerted by 

external fields on the particle's multipole moments of 
various orders. The simplest example of such a change 
is the Larmor precession of the particle's magnetic 
moment (y.) about the direction of a uniform magnetic 
field H; this precession obeys the equation 

d<V>/<fc=-7HX<v>, (1) 

where y indicates the gyromagnetic ratio of the particle 
and (#) the quantum-mechanical expectation value 
(the "mean") of its dipole magnetic moment. The next 
more complicated example occurs when a nucleus with 
spin of ^ 1 is subjected to electric field gradients, say, 
in a crystal lattice. The changes of orientation of a 
nucleus are detectable, for example, when they occur 
in the interval between two y-my emissions, because 
they affect the angular correlation of these radiations. 
Changes of orientation of molecules as they traverse 
electric or magnetic lenses with complex field con
figurations are also detectable. 

We wish to consider here the changes of orientation 
of a particle under the influence of arbitrary nonuniform 
fields. However, linear dependence of the effects on the 
field strengths will be assumed, thereby disregarding 
possible deformations of the particle by the fields. 

Since the orientation of a particle is represented, in 
general, by a density matrix, its variation in the course 
of time is represented by the relevant time-dependent 
Schrodinger equation for this matrix. The number of 
elements of the orientation density matrix for a spin-j 
particle, namely (2j+l)2, is rather large except for the 
elementary case of spin J. Therefore, it may take some 
effort to visualize what changes of orientation will occur 
in any specific case and how they will relate to the field 
strengths and geometry and to the multipole moments 
of the particle. 

Experimental and theoretical studies have been made 
of nuclear changes of orientation under the influence of 
torques acting on their magnetic dipole and electric 
quadrupole moments, almost exclusively for axially 
symmetric fields.1 To proceed further and to extend the 

1 See, e,g., S. Devons and L. T. B. Goldfarb, Encyclopedia of 
Physics, edited by S. Fltigge (Sprmger-Verlag, Berlin, 1957), 
Vol.42,pp. 513fit.; V. Gillet, Nucl. Phys. 20, 561 (1960). I thank 
Dr. Gillet for a friendly discussion, comments and advice on the 
subject of the present paper. Analytical and numerical work on 

studies to particles other than nuclei, one should 
identify geometrical and dynamical situations that are 
nontrivial, amenable to experimental investigation and 
capable of providing new information either on the 
multipole moments of particles or on the fields to which 
they are subjected. Even though no specific suggestion 
is offered to this end, it might perhaps be of help to 
present here a tensorial form of the Schrodinger equa
tion for the changes of orientation. This form con
stitutes a direct generalization of the vector equation (1) 
and displays a few symmetries and other general 
properties. 

Consider a particle whose angular momentum eigen-
states are classified by a total angular momentum 
quantum number j , a magnetic quantum number m 
and additional quantum numbers, if any, indicated by 
«, Its state of orientation can be represented by density 
matrix elements (ajm\p\ajmf) diagonal in a and j \ The 
general form of the Schrodinger equation for a density 
matrix is 

dp/dt~-ifrl(Wp-~ftiC). (2) 

The matrix elements of 5C and p which are of interest 
for our problem, namely, those diagonal in a and j , can 
be replaced by a linear substitution with standard 
tensorial sets2 of parameters, i.e., with new quantities 
that transform under coordinate rotations like the 
complex conjugates of spherical harmonics F&/\ The 
substitution, Eq. (18.1) of FR,2 is for the density 
matrix3 

P<*V 

for 
X (jjkq | jmj — tnf) (ajm | p | ajmf), (3) 

where (jjkq\jmj —mf) is a Wigner coefficient. Each 
pifc\ is proportional to the complex conjugate of the 
corresponding mean 2fc-pole moment component of the 

systems without axial symmetry has been done by E. Matthias, 
W. Schneider, and R. M. Steffen, Phys. Rev. 125. 161 (1962); 
Arkiv Fysik 24, 97 (1963). 

2 U. Fano and G. Racah, Irreducible Tensorial Sets (Academic 
Press Inc., New York, 1959), to be referred as FR. 

3 Since only matrix elements diagonal in (a,j) are involved here 
and these indices need not be shown explicitly, the symbol 
£(aj |p | aj)2 (&)« of FR can be replaced here by the simpler notation 
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particle, Qfftmq)*(FR, p. 105). Thus the state of orien
tation of the particle is characterized by parameters 
with immediate geometric significance. 

The Hamiltonian of the particle orientation consists 
of a sum of terms representing multipole interactions of 
various orders, namely, W=^k~i2jlLlqffilk]q&ik)q- Here 
9Ji[ftlfl indicates the qth component of the 2fc-pole 
moment operator of the particle and $t(k)

q is the cor
responding component of an irreducible standard tensor 
constructed with space derivatives of order k—1 of the 
electric or magnetic field.4 Each matrix element of a 
multipole moment operator is, according to the Wigner-
Eckart theorem (FR, p. 79), the product of a "reduced" 
matrix element independent of orientation and of 
a Wigner coefficient, (ajm\ffltik]

q\ajfn')==(~-l)'~m'' 
X(2k+l)~1I2(aj\\M^\aj)(jm,j -mf\jjkq). Therefore 
we may define, in analogy to (3), multipole parameters 
of the interaction 

X (jjkq | jm,j — m') {ajm 13C | ajm') (4) 
= ^1(2A+l)-*(ai||ifI*1||ai)a(*)

(r. 

Inclusion of the factor fir1 gives fi(k\ the dimensions of 
a frequency. The factor fir1(2k+l)-U2(aj\\M^\\aj) is a 
generalization of the gyromagnetic ratio. 

With these notations the calculation of the matrix 
product 3Cp in (2) reduces to a recoupling operation of 
Racah algebra, which yields, according to (18.18) of FR, 

^(5Cp)W,=L, 1 , 2 ( - l ) 2 ^C(2^ 1 +l) (2^ 2 +l) ] 1 / 2 

xw( )[o<*i>xe<*«>]<*>g. (5) 
V j y 

Here the (3Cp)(Ic)
q have been obtained from the matrix 

elements_(ayw|3Cp|ajw') by the substitution (3), the 
Racah W coefficient is the same as the Wigner 6j 
symbol with the same indices5 and 

(6) 

is a component of the irreducible product of degree k of 
the tensorial sets Q(kl) and Q(JC2). [The product (6) 
exists only for values of k±, k2 and k that fulfill the 
"triangular conditions" I&1—&2I ̂ k^ki+k2

 etc-D Cal
culation of the other matrix product in (2), namely 
frlp3Q,, yields the same result (5) except for permutation 
of the factors of the irreducible product. This permu
tation has the effect of multiplying the result by 
(— 1)*I+*2-A^ owing to the symmetry properties of the 

4 As is well known, the multipole interactions are electric or 
magnetic for even or odd values of k, respectively, because matrix 
elements diagonal in (a,j) vanish for operators that are odd under 
inversion of space coordinates. 

5 For an extensive table of the 6j symbols, which also provides 
the ordinary Wigner coefficients, see M. Rotenberg, R. Bivins, 
N. Metropolis, and John K. Wooten, Jr., The 3-j and 6-j Symbols 
(Technology Press, Cambridge, Massachusetts, 1959). 

Wigner coefficients (see, e.g., p. 37 of FR). Therefore, 
application of the substitution (3) to the ordinary 
matrix representation of (2) yields the desired tensorial 
form of this equation 

d9w/dt= -*X*i * ( - 1)***D- (-1)*1+*-*] 

Xl(2kl+l){2k2+l)Ji2w( * 2 W*i>X^:P, (7) 
v j y 

where boldface letters indicate collectively entire sets of 
tensorial components with different indices q. Equa
tion (7) displays explicitly which multipole parameters 
of the interaction, &(&l), are effective through coupling 
with given multipole parameters of the initial orienta
tion, j>(*2), in bringing about time changes of that 
orientation. 

A principal characteristic of (7) is the factor 
1— (~1)*I+*2-A which vanishes unless k\+k2~k is odd, 
that is, unless [G<fcl>X0(*2)](Jb) is odd with respect to 
permutation of its factors. The oddness of the vector 
product HX(ti) in (1) is a special case of this rule; in 
fact the right-hand side of (1) is equivalent to the term 
of (7) that contains only vectors (tensorial sets of degree 
1), i.e., to the term with ki=k2=k=l. The vector 
product HX(|i) represents a torque, which changes the 
direction of (y) but leaves invariant its squared mag
nitude I (v)|2. Similarly, the odd products on the right 
of (7) may be regarded as generalized torques which 
change the orientation parameters p(k)

q but leave in
variant their aggregate square magnitude6 

s=i z«\Pm
t\

2=z IPWI2 . (8) 

The sum S is an index of the degree of orientation or 
of polarization of the particle state, since it vanishes 
only in the state of random orientation, in which 
p(k)

q=0 for £T^0. The various subsums \g(k)\2 represent 
different "kinds" of polarization, namely, dipole, 
quadrupole, • • • polarization, respectively, for k=l, 
2 . . . (see also FR, p. 105). Equation (7) does not 
preserve, in general, the magnitudes of the separate 
kinds of polarization, i.e., of the individual | p(fc)|2. 

Conservation of the separate |£(A;)|2 occurs only in 
the case of uniform external fields in which Q(A;i) = 0 for 
k{>\ and consequently only terms with &2=& fail to 
vanish on the right of (7). The equation represents then 
a simultaneous simple precession of all separate 2*-pole 
sets of parameters &w about the direction of the 
uniform magnetic field with equal Larmor frequencies. 
In this case, but only in this case, the change of orienta
tion of the spinning particle resembles the precession of 
a classical top whose shape parameters are constant. 

6 The parameter p»>o=(2. ;+l)- 1 /*Trp=(2i+l)^ is the same 
for all states and is constant in time according to (7), so that it 
need not be considered. 



B830 U. FANO 

A milder restriction on the changes of orientation, 
corresponding to another subgroup of these motions, 
occurs when the electric field is uniform or vanishing 
but the magnetic field is arbitrary. In this case Q(kl) 

vanishes for all even values of k\ and only terms remain 
on the right of (7) for which k2 and k have the same 
parity. The sets of electric and magnetic 2ft-pole parame
ters—with k even and odd, respectively—do not inter
act then and we have two separate invariants, instead 
of (8) alone, namely 

The intrinsic magnetic moment p, of the particle is 
defined as usual as the mean value of pz in the state 
( j = l , m=l) and the quadrupole moment Q as the 
mean value of 3z2~-r2 times the density of positive 
charge in the same state. One finds then 

5 e I = E * e v e n | e ( * ) | 2 a n d 5 m a g n = E * odd| Q™ | 2 . (9) ^ ^ ^ ^ ^ - f r ^ 

Conversely, a nonuniform electric field in the absence 
of magnetic field causes only variations of the magnetic 
parameters (with odd k) proportional to^the electric 
ones and variations of the electric parameters propor
tional to the magnetic ones. A simple example of this 
effect occurs when nuclei are initially "aligned" in a 
certain direction but not "polarized," i.e., when 
pWq9£Q only for k even and ^=0; an electric field 
gradient yielding Q(2)

a5^0 for q^O will then generate an 
orientation represented by dp(1)

q/dt and/or dpm
q/dt^0. 

In the event of axial symmetry of all fields and field 
gradients, the coordinate axis is appropriately laid 
along the symmetry axis and all Q(kl)

q with gi^O 
vanish. Equation (7) reduces then to terms that relate 
parameters dpik\/dt to p(k2\2 with q^q. The original, 
nontensorial form (2) of the equation of motion is par
ticularly simple here, because the magnitude of each 
matrix element (ajm\p\ajmr) is now constant and its 
phase varies like exp[i(Em—Em')t/jf\, where the mag
netic quantum numbers m are now constants of the 
motion and Em is an energy eigenvalue. In this event, 
each p(k\ with q^O is a linear combination of different 
{m\p\m') with different Em—Em' though equal m—w! 
and therefore oscillates in magnitude in the course of 
time; however the J^k\pik)q\2 is constant for each value 
of q. 

Example: spin 1 

We write here, for purposes of illustration, the equa
tion of motion (7) for j— 1 with the appropriate nu
merical values of the Racah and Wigner coefficients and 
in terms of ordinary Cartesian components of the elec
tric and magnetic fields E and H and of their deriva
tives. The elements of the standard sets of parameters 
p(fc) are related to sets with other normalizations in 
accordance with FR, pp. 24, 25, and 105. 

QCI)1== -oaL1*=*-iM(jff,-iHJ f), 

d 

dx 
i-)(Ex 
dy/ 

-iEv), 

L\dx dy/ 

o=-(- ft-«e—, 
\ 8 / dz 

X| 

/3VI* dEz 

E,+-(Ex-iEy) 
dy/ dz 

(10) 

and 

rfp<1)
1M=i{Vi(0(1)iP(1)o-n(1)op(1)i) 

+Vf (0<2V2)o-0(2)oP(2)i)} , 

^pO>oM=i{VMn(1)iP(1>_i-fi(1)-iP(I)i) 
-^(0<2V2>_2-Q<2>_2p<2>2) 

+ VH^(2)
1P(2>-1-«(2)-iP(2)i)}, (11) 

-v2(0<»op(2)2-fiC2)2P(1)o)} , 

dp«^*=t{Vt(o{ 1 ) ip9 )o-Ow«P a )0 
-VK«(1)oP(2)i-0<2>lP<1'o) 

-(naLjpWi-aWtfOLO}, 
vv^=;v f^v^-ft^-ip^! 

-flOLipWi+OWipW-i} . 
The equations with q<0 are obtained from those with 
q>0 by reversing the sign of all q and the sign in front 
of the braces. A form of (11) without any imaginary 
element is obtained by replacing the standard sets of 
parameters j>(1) and p(2) with the corresponding "real 
standard" sets.7 

' U. Fano, J. Math. Phys. 1, 417 (1960). 


